Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
2.
Talanta ; 274: 125951, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38547842

RESUMO

A new nanozyme (CuGaa) with switchable enzyme-like activity of peroxidase and polyphenol oxidase was successfully prepared based on guanidinoacetic acid and copper. The two enzyme-like activities can be easily switched by changing temperature or adding MnCl2. At 4 °C, polyphenol oxidase-like activity decreased to nearly 1%, and the material is mainly characterized by peroxidase-like activity at this point. However, at 60 °C in the presence of 20 mM MnCl2, the peroxidase-like activity decreased to nearly 10%, and the polyphenol oxidase-like activity of the materials increased to 140%. Based on the switchable enzyme-like activity of CuGaa, detection methods for thymol and hydrogen peroxide were developed. In addition, a rapid combination strategy was further established combined with logic gate technology for the facile identification of complex contamination in honey, which provided new ideas for low-cost and rapid honey identification.

3.
J Hazard Mater ; 469: 133847, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422731

RESUMO

Traditional identification methods based on cholinesterase inhibition are limited to recognizing organic phosphorus and carbamate esters, and their response to sulfonylurea pesticides is weak. Residual sulfonylurea pesticides can pose a threat to human health. So, it is very important to develop an effective, rapid and portable method for sulfonylurea pesticides detection. Herein, we first found that sulfonylurea pesticides have activity-enhancing effects on copper-based nanozymes, and then combined them with the array technology to construct a six-channel sensing array method for selectively identifying sulfonylurea pesticides and detecting total concentration of sulfonylurea pesticides (the limit of detection was 0.03 µg/mL). This method has good selectivity towards sulfonylurea pesticides. In addition, a smartphone-based colorimetric paper sensor analysis method was developed to achieve the on-site detection of the total concentration of sulfonylurea pesticides. And this array can also be used for individual differentiation (1-100 µg/mL). Our work not only investigates the specific responses of copper-based nanozymes to sulfonylurea pesticides, but also develops a simple method that contributes to directly detect sulfonylurea pesticides at the source of pollution, providing insights for further research on sulfonylurea pesticides detection and filling the gap in pesticide residue studies.


Assuntos
Resíduos de Praguicidas , Praguicidas , Humanos , Praguicidas/análise , Cobre/análise , Resíduos de Praguicidas/análise , Colorimetria/métodos
4.
J Hazard Mater ; 466: 133655, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310843

RESUMO

The extensive use of plastics has given rise to microplastics, a novel environmental contaminant that has sparked considerable ecological and environmental concerns. Biodegradation offers a more environmentally friendly approach to eliminating microplastics, but their degradation by marine microbial communities has received little attention. In this study, we used iron-enhanced marine sediment to augment the natural bacterial community and facilitate the decomposition of polyethylene (PE) microplastics. The introduction of iron-enhanced sediment engendered an augmented bacterial biofilm formation on the surface of polyethylene (PE), thereby leading to a more pronounced degradation effect. This novel observation has been ascribed to the oxidative stress-induced generation of a variety of oxygenated functional groups, including hydroxyl (-OH), carbonyl (-CO), and ether (-C-O) moieties, within the microplastic substrate. The analysis of succession in the community structure of sediment bacteria during the degradation phase disclosed that Acinetobacter and Pseudomonas emerged as the principal bacterial players in PE degradation. These taxa were directly implicated in oxidative metabolic pathways facilitated by diverse oxidase enzymes under iron-facilitated conditions. The present study highlights bacterial community succession as a new pivotal factor influencing the complex biodegradation dynamics of polyethylene (PE) microplastics. This investigation also reveals, for the first time, a unique degradation pathway for PE microplastics orchestrated by the multifaceted marine sediment microbiota. These novel insights shed light on the unique functional capabilities and internal biochemical mechanisms employed by the marine sediment microbiota in effectively degrading polyethylene microplastics.


Assuntos
Microbiota , Poluentes Químicos da Água , Microplásticos/farmacologia , Plásticos/análise , Polietileno/farmacologia , Ferro/análise , Poluentes Químicos da Água/análise , Bactérias , Sedimentos Geológicos/microbiologia , Redes e Vias Metabólicas
5.
Proc Natl Acad Sci U S A ; 121(5): e2309811121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252832

RESUMO

Nanomedicine has emerged as a revolutionary strategy of drug delivery. However, fundamentals of the nano-neuro interaction are elusive. In particular, whether nanocarriers can cross the blood-brain barrier (BBB) and release the drug cargo inside the brain, a basic process depicted in numerous books and reviews, remains controversial. Here, we develop an optical method, based on stimulated Raman scattering, for imaging nanocarriers in tissues. Our method achieves a suite of capabilities-single-particle sensitivity, chemical specificity, and particle counting capability. With this method, we visualize individual intact nanocarriers crossing the BBB of mouse brains and quantify the absolute number by particle counting. The fate of nanocarriers after crossing the BBB shows remarkable heterogeneity across multiple scales. With a mouse model of aging, we find that blood-brain transport of nanocarriers decreases with age substantially. This technology would facilitate development of effective therapeutics for brain diseases and clinical translation of nanocarrier-based treatment in general.


Assuntos
Encefalopatias , Nanomedicina , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Barreira Hematoencefálica/diagnóstico por imagem , Envelhecimento
6.
Proc Natl Acad Sci U S A ; 121(2): e2308415120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150477

RESUMO

Genomic DNA of the cyanophage S-2L virus is composed of 2-aminoadenine (Z), thymine (T), guanine (G), and cytosine (C), forming the genetic alphabet ZTGC, which violates Watson-Crick base pairing rules. The Z-base has an extra amino group on the two position that allows the formation of a third hydrogen bond with thymine in DNA strands. Here, we explored and expanded applications of this non-Watson-Crick base pairing in protein expression and gene editing. Both ZTGC-DNA (Z-DNA) and ZUGC-RNA (Z-RNA) produced in vitro show detectable compatibility and can be decoded in mammalian cells, including Homo sapiens cells. Z-crRNA can guide CRISPR-effectors SpCas9 and LbCas12a to cleave specific DNA through non-Watson-Crick base pairing and boost cleavage activities compared to A-crRNA. Z-crRNA can also allow for efficient gene and base editing in human cells. Together, our results help pave the way for potential strategies for optimizing DNA or RNA payloads for gene editing therapeutics and give insights to understanding the natural Z-DNA genome.


Assuntos
Pareamento de Bases , Sistemas CRISPR-Cas , DNA Forma Z , Edição de Genes , Humanos , DNA/genética , DNA/química , DNA Forma Z/genética , Edição de Genes/métodos , RNA/genética , RNA Guia de Sistemas CRISPR-Cas , Timina/química
7.
Proc Natl Acad Sci U S A ; 120(52): e2311752120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38134199

RESUMO

The emergence of highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that are resistant to the current COVID-19 vaccines highlights the need for continued development of broadly protective vaccines for the future. Here, we developed two messenger RNA (mRNA)-lipid nanoparticle (LNP) vaccines, TU88mCSA and ALCmCSA, using the ancestral SARS-CoV-2 spike sequence, optimized 5' and 3' untranslated regions (UTRs), and LNP combinations. Our data showed that these nanocomplexes effectively activate CD4+ and CD8+ T cell responses and humoral immune response and provide complete protection against WA1/2020, Omicron BA.1 and BQ.1 infection in hamsters. Critically, in Omicron BQ.1 challenge hamster models, TU88mCSA and ALCmCSA not only induced robust control of virus load in the lungs but also enhanced protective efficacy in the upper respiratory airways. Antigen-specific immune analysis in mice revealed that the observed cross-protection is associated with superior UTRs [Carboxylesterase 1d (Ces1d)/adaptor protein-3ß (AP3B1)] and LNP formulations that elicit robust lung tissue-resident memory T cells. Strong protective effects of TU88mCSA or ALCmCSA against both WA1/2020 and VOCs suggest that this mRNA-LNP combination can be a broadly protective vaccine platform in which mRNA cargo uses the ancestral antigen sequence regardless of the antigenic drift. This approach could be rapidly adapted for clinical use and timely deployment of vaccines against emerging and reemerging VOCs.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Cricetinae , Animais , Humanos , Camundongos , RNA Mensageiro/genética , Vacinas contra COVID-19/genética , Vacinas de mRNA , SARS-CoV-2/genética , COVID-19/prevenção & controle , Regiões 3' não Traduzidas , Anticorpos Neutralizantes , Anticorpos Antivirais
8.
Nat Commun ; 14(1): 6645, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863882

RESUMO

Endo-lysosomal escape is a highly inefficient process, which is a bottleneck for intracellular delivery of biologics, including proteins and nucleic acids. Herein, we demonstrate the design of a lipid-based nanoscale molecular machine, which achieves efficient cytosolic transport of biologics by destabilizing endo-lysosomal compartments through nanomechanical action upon light irradiation. We fabricate lipid-based nanoscale molecular machines, which are designed to perform mechanical movement by consuming photons, by co-assembling azobenzene lipidoids with helper lipids. We show that lipid-based nanoscale molecular machines adhere onto the endo-lysosomal membrane after entering cells. We demonstrate that continuous rotation-inversion movement of Azo lipidoids triggered by ultraviolet/visible irradiation results in the destabilization of the membranes, thereby transporting cargoes, such as mRNAs and Cre proteins, to the cytoplasm. We find that the efficiency of cytosolic transport is improved about 2.1-fold, compared to conventional intracellular delivery systems. Finally, we show that lipid-based nanoscale molecular machines are competent for cytosolic transport of tumour antigens into dendritic cells, which induce robust antitumour activity in a melanoma mouse model.


Assuntos
Produtos Biológicos , Luz , Animais , Camundongos , Transporte Biológico , Lisossomos/metabolismo , Lipídeos , Produtos Biológicos/metabolismo
9.
Food Chem ; 424: 136477, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37263094

RESUMO

Accurate pesticide identification is of great importance for regulating food safety. However, the discrimination between organophosphorus pesticides (OPs) and carbamate pesticides (CPs) is still a challenge for existing analytical methods based on cholinesterase inhibition. It mainly because of the similar inhibitory effect of OPs and CPs on cholinesterase. Herein, we found that OPs and CPs differentially affected nanozymes with laccase-like activity, which would be interfered by OPs in different degrees rather than CPs. Thus, we fabricated a nanozyme sensor array and successfully achieved the OPs identification and similar individual discrimination, ignoring the interference from CPs or other potential interferents (antibiotics, ions, other pesticides). On the basis of nanozyme sensor array, a portable method using smartphone was constructed and utilized to determine OPs in fruits and vegetables. This work would contribute to the development of portable sensors and the highly selective identification and discrimination of OPs in complex samples.


Assuntos
Praguicidas , Praguicidas/análise , Compostos Organofosforados , Cobre , Lacase , Smartphone , Colinesterases , Carbamatos
10.
Biosens Bioelectron ; 237: 115458, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37311405

RESUMO

Conventional rapid detection methods are difficult to identify or distinguish various pesticide residues at the same time. And sensor arrays are also limited by the complexity of preparing multiple receptors and high cost. To address this challenge, a single material with multiple properties is considered. Herein, we first found that different categories of pesticides have diverse regulatory behaviors on the multiple catalytic activities of Asp-Cu nanozyme. Thus, a three-channel sensor array based on the laccase-like, peroxidase-like, and superoxide dismutase-like activities of Asp-Cu nanozyme was constructed and successfully used for the discrimination of eight kinds of pesticides (glyphosate, phosmet, isocarbophos, carbaryl, pentachloronitrobenzene, metsulfuron-methyl, etoxazole, and 2-methyl-4-chlorophenoxyacetic acid). In addition, a concentration-independent model for qualitative identification of pesticides has been established, and 100% correctness was achieved in the recognition of unknown samples. Then, the sensor array also exhibited excellent interference immunity and was reliable for real sample analysis. It provided a reference for pesticide efficient detection and food quality supervision.


Assuntos
Técnicas Biossensoriais , Resíduos de Praguicidas , Praguicidas , Fosmet , Praguicidas/análise , Técnicas Biossensoriais/métodos , Peroxidase/análise , Fosmet/análise
11.
Talanta ; 252: 123853, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998448

RESUMO

In this work, 2-methylimidazole (MI) was doped into the Bpy-Cu nanozyme as a second ligand to form a novel laccase-mimicking enzyme (MI-Bpy-Cu). By comparison, MI-Bpy-Cu nanozyme was identified to have excellent laccase-mimicking activity, high stability and catalytic kinetic properties. It may be that the incorporation of 2-methylimidazole helped the nanozymes to build a structure closer to natural laccase and accelerate the electron transfer rate, thereby achieving the purpose of enhancing the activity. Furthermore, we observed that MI-Bpy-Cu nanozymes could oxidize the colorless (+)-Catechin to generate a yellow radical product, and a novel colorimetric sensing strategy for (+)-Catechin was successfully developed. The method had excellent selectivity and anti-interference properties, and also had good application in the analysis of (+)-Catechin in dairy products.


Assuntos
Catequina , Lacase , Lacase/química , Catequina/química , Catálise , Colorimetria/métodos , Laticínios
12.
J Am Chem Soc ; 145(1): 551-559, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36537880

RESUMO

Photoresponsive inhibitor and noninhibitor systems have been developed to achieve on-demand enzyme activity control. However, inhibitors are only effective for a specific and narrow range of enzymes. Noninhibitor systems usually require mutation and modification of the enzymes, leading to irreversible loss of enzymatic activities. Inspired by biological membranes, we herein report a lipidoid-based artificial compartment composed of azobenzene (Azo) lipidoids and helper lipids, which can bidirectionally regulate the activity of the encapsulated enzymes by light. In this system, the reversible photoisomerization of Azo lipidoids triggered by UV/vis light creates a continuous rotation-inversion movement, thereby enhancing the permeability of the compartment membrane and allowing substrates to pass through. Moreover, the membrane can revert to its impermeable state when light is removed. Thus, enzyme activity can be switched on and off when encapsulating enzymes in the compartments. Importantly, since neither mutation nor modification is required, negligible loss of activity is observed for the encapsulated enzymes after repeated activation and inhibition. Furthermore, this approach provides a generic strategy for controlling multiple enzymes by forgoing the use of inhibitors and may broaden the applications of enzymes in biological mechanism research and precision medicine.


Assuntos
Compostos Azo , Raios Ultravioleta , Membrana Celular , Compostos Azo/farmacologia
13.
Sci Total Environ ; 858(Pt 2): 159876, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334662

RESUMO

Bisphenol A (BPA), a typical endocrine disruptor and a contaminant of emerging concern (CECs), has detrimental impacts not only on the environment and ecosystems, but also on human health. Therefore, it is essential to investigate the degrading processes of BPA in order to diminish its persistent effects on ecological environmental safety. With this objective, the present study reports on the effectiveness of biotic/abiotic factors in optimizing BPA removal and evaluates the kinetic models of the biodegradation processes. The results showed that BPA affected chlorophyll a, superoxide dismutase (SOD) and peroxidase (POD) activities, malondialdehyde (MDA) content, and photosystem intrinsic PSII efficiency (Fv/Fm) in the microalga Chlorella pyrenoidosa, which degraded 43.0 % of BPA (8.0 mg L-1) under general experimental conditions. The bacteria consortium AEF21 could remove 55.4 % of BPA (20 mg L-1) under orthogonal test optimization (temperature was 32 °C, pH was 8.0, inoculum was 6.0 %) and the prediction of artificial neural network (ANN) of machine learning (R2 equal to 0.99 in training, test, and validation phase). The microalgae-bacteria consortia have a high removal rate of 57.5 % of BPA (20.0 mg L-1). The kinetic study revealed that the removal processes of BPA by microalgae, bacteria, and microalgae-bacteria consortia all followed the Monod's kinetic model. This work provided a new perspective to apply artificial intelligence to predict the degradation of BPA and to understand the kinetic processes of BPA biodegradation by integrated biological approaches, as well as a novel research strategy to achieve environmental CECs elimination for long-term ecosystem health.


Assuntos
Chlorella , Microalgas , Humanos , Microalgas/metabolismo , Ecossistema , Chlorella/metabolismo , Clorofila A/metabolismo , Inteligência Artificial , Compostos Benzidrílicos/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Aprendizado de Máquina
14.
Cell Mol Neurobiol ; 43(5): 2219-2241, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36571634

RESUMO

Traumatic brain injury (TBI) can lead to neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that remain incompletely characterized. Similar to AD, TBI models present with cellular metabolic alterations and modulated cleavage of amyloid precursor protein (APP). Specifically, AD and TBI tissues display increases in amyloid-ß as well as its precursor, the APP C-terminal fragment of 99 a.a. (C99). Our recent data in cell models of AD indicate that C99, due to its affinity for cholesterol, induces the formation of transient lipid raft domains in the ER known as mitochondria-associated endoplasmic reticulum (ER) membranes ("MAM" domains). The formation of these domains recruits and activates specific lipid metabolic enzymes that regulate cellular cholesterol trafficking and sphingolipid turnover. Increased C99 levels in AD cell models promote MAM formation and significantly modulate cellular lipid homeostasis. Here, these phenotypes were recapitulated in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, the injured cortex and hippocampus displayed significant increases in C99 and MAM activity, as measured by phospholipid synthesis, sphingomyelinase activity and cholesterol turnover. In addition, our cell type-specific lipidomics analyses revealed significant changes in microglial lipid composition that are consistent with the observed alterations in MAM-resident enzymes. Altogether, we propose that alterations in the regulation of MAM and relevant lipid metabolic pathways could contribute to the epidemiological connection between TBI and AD.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Camundongos , Animais , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Regulação para Cima , Retículo Endoplasmático/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lipídeos
15.
Anal Methods ; 14(37): 3644-3651, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36098063

RESUMO

Abnormal galactose metabolism is the main cause of galactosemia, which makes the accurate and rapid analysis of galactose levels in food and organism the key issue at present. In this study, a novel strategy for one-step galactose determination was proposed based on galactose oxidase and copper-based metal-organic framework complexes (GAOx@MOF) with dual catalytic activities at neutral pH. Typically, GAOx catalyzes the oxidation of the C6 hydroxyl group of D-galactose to generate an aldehyde (D-galactose-hexanedial), and coupled with the reduction of dioxygen to H2O2, which was immediately transformed to ˙OH by mimicking peroxidase activity and at the same time oxidized ABTS to a green product with a clear colorimetric signal. The whole process was completed using one buffer, which simplified the procedure and increased the sensitivity. Moreover, the proposed method can also be used for the quantitative analysis of galactose. It showed a good linear relationship at 20-1000 µM, while the LOD was 6.67 µM. Furthermore, the strategy has been successfully utilized for galactose determination in milk samples, which proved its promising applications in clinical analysis and the food industry.


Assuntos
Galactose Oxidase , Estruturas Metalorgânicas , Aldeídos , Corantes , Cobre , Galactose , Galactose Oxidase/química , Galactose Oxidase/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Estruturas Metalorgânicas/química , Oxirredutases , Oxigênio , Peroxidase/metabolismo , Peroxidases/química
16.
Proc Natl Acad Sci U S A ; 119(34): e2207841119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969778

RESUMO

The targeted delivery of messenger RNA (mRNA) to desired organs remains a great challenge for in vivo applications of mRNA technology. For mRNA vaccines, the targeted delivery to the lymph node (LN) is predicted to reduce side effects and increase the immune response. In this study, we explored an endogenously LN-targeting lipid nanoparticle (LNP) without the modification of any active targeting ligands for developing an mRNA cancer vaccine. The LNP named 113-O12B showed increased and specific expression in the LN compared with LNP formulated with ALC-0315, a synthetic lipid used in the COVID-19 vaccine Comirnaty. The targeted delivery of mRNA to the LN increased the CD8+ T cell response to the encoded full-length ovalbumin (OVA) model antigen. As a result, the protective and therapeutic effect of the OVA-encoding mRNA vaccine on the OVA-antigen-bearing B16F10 melanoma model was also improved. Moreover, 113-O12B encapsulated with TRP-2 peptide (TRP2180-188)-encoding mRNA also exhibited excellent tumor inhibition, with the complete response of 40% in the regular B16F10 tumor model when combined with anti-programmed death-1 (PD-1) therapy, revealing broad application of 113-O12B from protein to peptide antigens. All the treated mice showed long-term immune memory, hindering the occurrence of tumor metastatic nodules in the lung in the rechallenging experiments that followed. The enhanced antitumor efficacy of the LN-targeting LNP system shows great potential as a universal platform for the next generation of mRNA vaccines.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Vacinas de mRNA , Amino Álcoois , Animais , Antígenos/metabolismo , Linfócitos T CD8-Positivos , Vacinas Anticâncer/uso terapêutico , Decanoatos , Memória Imunológica , Lipossomos , Linfonodos , Camundongos , Metástase Neoplásica/prevenção & controle , Neoplasias/terapia , Ovalbumina , Vacinas de mRNA/uso terapêutico
17.
Langmuir ; 38(30): 9092-9098, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35852946

RESUMO

The field of nanomedicine has rapidly grown in the past decades. Although a few nanomedicines are available in the market for clinical use, it is still challenging to develop nanomedicine targeting tissues beyond the liver. It has been recognized that even though the nanoparticles are modified with targeting ligands, the formation of a protein corona on the surface of nanoparticles in the biological fluids results in limited progress in nanoparticle-based drug delivery to specific cells or tissues. In this Perspective, we will discuss the role of surface properties in determining the formation of the protein corona and summarize the recent progress in engineering the nano/bio interface for protein-corona-mediated cell- and organ-selective drug delivery. Moreover, current challenges in the field and insights into designing new strategies for targeting drug delivery with a better understanding of the protein corona will be discussed.


Assuntos
Nanopartículas , Coroa de Proteína , Sistemas de Liberação de Medicamentos , Engenharia , Nanomedicina/métodos
18.
Luminescence ; 37(9): 1414-1426, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35723898

RESUMO

To realize the efficient differential sensing of phenolic pollutants in sewage, a novel sensing strategy was successfully developed based on a nanozyme (GMP-Cu) with polyphenol oxidase activity. Phenolic pollutants can be oxidized using GMP-Cu, and the oxidation products reacts subsequently with 4-aminoantipyrine to produce a quinone-imine compound. The absorption spectra of final quinone-imine products that resulted from different phenolic pollutants showed obvious differences, which were due to the interaction difference between GMP-Cu and phenolic pollutants, as well as the different molecular structures of the quinone-imine products from different phenolic pollutants. Based on the difference in the absorption spectra, a novel differential sensing strategy was developed. A genetic algorithm was used to select the characteristic wavelengths at different enzymatic reaction times. Hierarchical cluster analysis and PLS-DA algorithms were utilized for the discriminant sensing of seven representative phenolic pollutants, including hydroquinone, resorcinol, catechol, resorcinol, phenol, p-chlorophenol, and 2,4-dichlorophenol. A scientific wavelength selection algorithm and a recognition algorithm resulted in the successful identification of phenolic pollutants in sewage with a discriminant accuracy of 100%, and differentiation of the phenolic pollutants regardless of their concentration. These results indicated that a sensing strategy can be used as an effective tool for the efficient identification and differentiation of phenolic pollutants in sewage.


Assuntos
Poluentes Ambientais , Catecol Oxidase , Iminas , Fenóis/química , Quinonas , Resorcinóis/análise , Resorcinóis/química , Esgotos
19.
Artigo em Inglês | MEDLINE | ID: mdl-35627529

RESUMO

The spontaneous pro-environmental behavior (PEB) of rural residents is essential for rural environmental governance. Existing studies have primarily focused on the impact of objective factors on individual PEB, while less attention has been paid to the role of subjective factors, such as rural residents' subjective well-being, in shaping such behaviors. Based on the Chinese General Social Survey (CGSS) data, this study evaluates the impact of subjective well-being on the PEB of rural residents. The results show that subjective well-being significantly promoted the PEB in both the private sphere with reciprocity and the public sphere with altruistic attributes. Subjective well-being affected PEB mainly by enhancing rural residents' social interaction and reciprocity with others and raising their fraternity and altruism. Moreover, the positive effect was mainly driven by women and individuals with more environmental knowledge. Therefore, enhancing rural residents' subjective well-being is not only an important development goal, but also the starting point and foothold of solving the contradiction between economic development and environmental protection and promoting social harmony.


Assuntos
Conservação dos Recursos Naturais , Política Ambiental , China , Feminino , Humanos , População Rural
20.
J Agric Food Chem ; 70(16): 5228-5236, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35411770

RESUMO

Choline is an important factor for regulating human health and is widely present in various foods. In this work, a sensor strategy based on a choline oxidase-integrated copper(II) metal-organic framework with peroxidase-like activity is constructed for one-step cascade detection of choline. The one-step cascade strategy can avoid intermediate product transferring in general multi-step reactions, and the multi-enzyme activities can be well exerted under one condition, thus exhibiting excellent catalytic activity and enhanced stability. In the integrated system, choline is catalyzed by ChOx to produce betaine and H2O2, which eventually got converted to hydroxyl radicals by the peroxidase nanozyme, oxidized the chromogenic substrate ABTS, and produced an observable absorption peak at 420 nm. A new choline detection method was thus established and showed a satisfactory linear relationship at 6-300 µM, which has been used for the choline analysis in milk.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Oxirredutases do Álcool , Técnicas Biossensoriais/métodos , Colina , Colorimetria/métodos , Cobre , Humanos , Peróxido de Hidrogênio , Peroxidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...